279 research outputs found

    Construction of analysis-suitable G1G^1 planar multi-patch parameterizations

    Full text link
    Isogeometric analysis allows to define shape functions of global C1C^{1} continuity (or of higher continuity) over multi-patch geometries. The construction of such C1C^{1}-smooth isogeometric functions is a non-trivial task and requires particular multi-patch parameterizations, so-called analysis-suitable G1G^{1} (in short, AS-G1G^{1}) parameterizations, to ensure that the resulting C1C^{1} isogeometric spaces possess optimal approximation properties, cf. [7]. In this work, we show through examples that it is possible to construct AS-G1G^{1} multi-patch parameterizations of planar domains, given their boundary. More precisely, given a generic multi-patch geometry, we generate an AS-G1G^{1} multi-patch parameterization possessing the same boundary, the same vertices and the same first derivatives at the vertices, and which is as close as possible to this initial geometry. Our algorithm is based on a quadratic optimization problem with linear side constraints. Numerical tests also confirm that C1C^{1} isogeometric spaces over AS-G1G^{1} multi-patch parameterized domains converge optimally under mesh refinement, while for generic parameterizations the convergence order is severely reduced

    A family of C1C^1 quadrilateral finite elements

    Full text link
    We present a novel family of C1C^1 quadrilateral finite elements, which define global C1C^1 spaces over a general quadrilateral mesh with vertices of arbitrary valency. The elements extend the construction by (Brenner and Sung, J. Sci. Comput., 2005), which is based on polynomial elements of tensor-product degree p≥6p\geq 6, to all degrees p≥3p \geq 3. Thus, we call the family of C1C^1 finite elements Brenner-Sung quadrilaterals. The proposed C1C^1 quadrilateral can be seen as a special case of the Argyris isogeometric element of (Kapl, Sangalli and Takacs, CAGD, 2019). The quadrilateral elements possess similar degrees of freedom as the classical Argyris triangles. Just as for the Argyris triangle, we additionally impose C2C^2 continuity at the vertices. In this paper we focus on the lower degree cases, that may be desirable for their lower computational cost and better conditioning of the basis: We consider indeed the polynomial quadrilateral of (bi-)degree~55, and the polynomial degrees p=3p=3 and p=4p=4 by employing a splitting into 3×33\times3 or 2×22\times2 polynomial pieces, respectively. The proposed elements reproduce polynomials of total degree pp. We show that the space provides optimal approximation order. Due to the interpolation properties, the error bounds are local on each element. In addition, we describe the construction of a simple, local basis and give for p∈{3,4,5}p\in\{3,4,5\} explicit formulas for the B\'{e}zier or B-spline coefficients of the basis functions. Numerical experiments by solving the biharmonic equation demonstrate the potential of the proposed C1C^1 quadrilateral finite element for the numerical analysis of fourth order problems, also indicating that (for p=5p=5) the proposed element performs comparable or in general even better than the Argyris triangle with respect to the number of degrees of freedom

    Unstructured spline spaces for isogeometric analysis based on spline manifolds

    Full text link
    Based on spline manifolds we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure, which allows for the definition of function spaces that have a tensor-product structure locally, but not globally. This includes configurations such as B-splines over multi-patch domains with extraordinary points, analysis-suitable unstructured T-splines, or more general constructions. Within this framework, we generalize the concept of dual-compatible B-splines, which was originally developed for structured T-splines. This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for hh-refined meshes

    The Argyris isogeometric space on unstructured multi-patch planar domains

    Full text link
    Multi-patch spline parametrizations are used in geometric design and isogeometric analysis to represent complex domains. We deal with a particular class of C0C^0 planar multi-patch spline parametrizations called analysis-suitable G1G^1 (AS-G1G^{1}) multi-patch parametrizations (Collin, Sangalli, Takacs; CAGD, 2016). This class of parametrizations has to satisfy specific geometric continuity constraints, and is of importance since it allows to construct, on the multi-patch domain, C1C^1 isogeometric spaces with optimal approximation properties. It was demonstrated in (Kapl, Sangalli, Takacs; CAD, 2018) that AS-G1G^1 multi-patch parametrizations are suitable for modeling complex planar multi-patch domains. In this work, we construct a basis, and an associated dual basis, for a specific C1C^1 isogeometric spline space W\mathcal{W} over a given AS-G1G^1 multi-patch parametrization. We call the space W\mathcal{W} the Argyris isogeometric space, since it is C1C^1 across interfaces and C2C^2 at all vertices and generalizes the idea of Argyris finite elements to tensor-product splines. The considered space W\mathcal{W} is a subspace of the entire C1C^1 isogeometric space V1\mathcal{V}^{1}, which maintains the reproduction properties of traces and normal derivatives along the interfaces. Moreover, it reproduces all derivatives up to second order at the vertices. In contrast to V1\mathcal{V}^{1}, the dimension of W\mathcal{W} does not depend on the domain parametrization, and W\mathcal{W} admits a basis and dual basis which possess a simple explicit representation and local support. We conclude the paper with some numerical experiments, which exhibit the optimal approximation order of the Argyris isogeometric space W\mathcal{W} and demonstrate the applicability of our approach for isogeometric analysis

    Almost-C1C^1 splines: Biquadratic splines on unstructured quadrilateral meshes and their application to fourth order problems

    Full text link
    Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field of Computer-Aided Design. A central problem in achieving this objective is the reconstruction of analysis-suitable models from Computer-Aided Design models, which is in general a non-trivial and time-consuming task. In this article, we present a novel spline construction, that enables model reconstruction as well as simulation of high-order PDEs on the reconstructed models. The proposed almost-C1C^1 are biquadratic splines on fully unstructured quadrilateral meshes (without restrictions on placements or number of extraordinary vertices). They are C1C^1 smooth almost everywhere, that is, at all vertices and across most edges, and in addition almost (i.e. approximately) C1C^1 smooth across all other edges. Thus, the splines form H2H^2-nonconforming analysis-suitable discretization spaces. This is the lowest-degree unstructured spline construction that can be used to solve fourth-order problems. The associated spline basis is non-singular and has several B-spline-like properties (e.g., partition of unity, non-negativity, local support), the almost-C1C^1 splines are described in an explicit B\'ezier-extraction-based framework that can be easily implemented. Numerical tests suggest that the basis is well-conditioned and exhibits optimal approximation behavior

    Adaptive refinement for unstructured T-splines with linear complexity

    Get PDF
    We present an adaptive refinement algorithm for T-splines on unstructured 2D meshes. While for structured 2D meshes, one can refine elements alternatingly in horizontal and vertical direction, such an approach cannot be generalized directly to unstructured meshes, where no two unique global mesh directions can be assigned. To resolve this issue, we introduce the concept of direction indices, i.e., integers associated to each edge, which are inspired by theory on higher-dimensional structured T-splines. Together with refinement levels of edges, these indices essentially drive the refinement scheme. We combine these ideas with an edge subdivision routine that allows for I-nodes, yielding a very flexible refinement scheme that nicely distributes the T-nodes, preserving global linear independence, analysis-suitability (local linear independence) except in the vicinity of extraordinary nodes, sparsity of the system matrix, and shape regularity of the mesh elements. Further, we show that the refinement procedure has linear complexity in the sense of guaranteed upper bounds on a) the distance between marked and additionally refined elements, and on b) the ratio of the numbers of generated and marked mesh elements. © 2022 The Author(s
    • …
    corecore